Multi-agent Environment for Complex SYstems
COsimulation (MECSYCO) - User Guide: Debug system

Benjamin Camus!?, Julien Vaubourg?, Yannick Presse?,
Victorien Elvinger?, Thomas Paris'?, Alexandre Tan?
Vincent Chevrier'?, Laurent Ciarlettal?, Christine Bourjot!?
niversite de Lorraine, CNRS, LORIA UMR 7503,
Vandoeuvre-les-Nancy, F-54506, France.
2INRIA, Villers-les-Nancy, F-54600, France.
mecsyco@inria.fr

April 6, 2016

Contents

Introduction

1 Installation

2 Use
2.1 Levels . . . o e
2.2 LOGEETS . . . e e e e

3 Configuration
3.1 Create New MeESSAZES . . .« v v v v v e e e e e e e e

Introduction

The debug system is a tool adapt to MECSYCO-java only. It helps to debug since it allows the
user to follow the proceedings of the simulation (data send, received, by who etc...). It relies on
SLJF4J'. SLF4] is a facade or abstraction for various logging frameworks. Thereby the choice of
the debug system is a decision from the user.

Thttp://www.slf4j.org/

http://www.slf4j.org/

Chapter 1

Installation

The debug system is not a jar but a folder that interact with MECSYCO properties. You can
download it on the website in the ”Download” section. You will also need to install beforehand
the dependencies: Logback-core-1.1.3.jar, Logback-classic-1.1.3.jar, janino-2.7.8.jar and commons-
compiler-2.7.8.jar.

After the download, you will have a folder named conf. This folder need to be placed at the
root of your Eclipse project where you need to use the debug system (Figure 1.1).

settings
bin
conf
data_log
libs
FESOUICES
src
|| .classpath
|| .project
|| DemoR.R

Figure 1.1: The folder to placed ”conf” (Getting Started 2 example)

Then, you need to add it to the build path of the project. To do so, use Eclipse interface
(Project— >Properties— >Java Build Path— >Add Folder...— >select the conf folder)

£ Properties for getting-started2 [m] X
P £} 9

& Source Folder Selection O X
type filter text Java Build Path T T

Resource Select the source folder:
Builders [Source [Projects = Libraries % Order and Export v [1& gefting-started2
Java Build Path Source folders on build path: [&= settings
Java Code Style [getting-started?/src Add Folder... O & bin
Java Compiler & conf
Java Editor Link Source... . dats |
Javadoc Location o & datelog
Project References e D& fibs
Refactoring History [= resources
Run/Debug Settings Remove W) (= src
Table Resize Test
Task Repository
Task Tags
Tree Resize Test
Validation
WikiText

[Allow output folders for source folders T e B,

Default output folder:

[getting-started2\bin Browse..

@ oK Cancel @ ance

Figure 1.2: Adding ”conf” to the build path of the getting started 2 project.

Your project is now able to use the debug system.

Chapter 2

Use

The debug system allows you to follow the proceedings of the simulation by printing in the console
all kind of information. Having a lot of information printed could slow down the simulation, so we
made it activation and disabling easy.

2.1 Levels

SLF4J provides five message levels. A level adds a specific semantic to the message:

¢ ERROR:for error and exception messages which can produce the stopping of the system
¢ WARN: for warning messages which reports unusual or unexpected behaviors

e INFO: for messages which reports useful information in dev and production mode (Remote
connection establishment, ...)

e DEBUG:for debugging messages which can be useful in the development process
e TRACE: is similar to DEBUG. It can be useful for printing extra details.

In Logback, the set of message levels is ordered. Logback enables to set a level. It allows that the
message with this level and the lower levels are printed.

The next table exhibits the printed messages according to the configured level (OFF < ERROR <
DEBUG < INFO < DEBUG < TRACE).

Configured level
Message level | TRACE | DEBUG | INFO | WARN | ERROR | OFF
TRACE PRINTED
DEBUG PRINTED | PRINTED
INFO PRINTED | PRINTED | PRINTED
WARN PRINTED | PRINTED | PRINTED | PRINTED
ERROR PRINTED | PRINTED | PRINTED | PRINTED | PRINTED

Table 2.1: Behavior of the configured level
For example, if the level is set to INFO then the messages with INFO or WARN or else ERROR
level are printed.
2.2 Loggers

SLF4J enables to print messages through named loggers. A logger should be created for each
specific component or entity of the software. This is where the name parameter of the constructor

is mainly used. When printing, the name will be use and allow the user to know exactly which

component is described.

4 [agentZ] TRACE mecsyco.
[agentX] DEBUG mecsyco.
6 [agentZ] TRACE mecsyco.
[agentX] TRACE mecsyco.
[agent¥] TRACE mecsvco.
[ob=s] TRACE mecsyco.magent.observing.obs —- at 93.393000000001425 from X process Tuple (2.58548295903819; X)
[obs] TRACE mecsyco.magent.observing.obs —-- at 99.9%000000001425 from ¥ process Tuple (3.1153759160666223; Y)
[agentX] INFC mecsyco.artifact.interface.model.¥model —-- end simuwlation at time 99.93%000000001425

[agent¥] INFC mecsyco.artifact.interface.model.¥model —-- end simulation at time 99.99%2000000001425

[obs] TRACE mecsyco.magent.observing.obs —— at 99.992000000001425 from Z process Tuple (21.21287562541732; Z)
[agentZ] INFC mecsyco.artifact.interface.model.Zmodel —— end simulation at time 99.99000000001425

[obs] INFC mecsyco.artifact.interface.observing.comparator —-- error rate: 0.0

6 [obs] INFC mecsvco.artifact.interface.observing.comparator —- 30000.0 Data Compared

magent.simulation.agentZ —- at 99.9%000000001425 from X process

artifact.coupling.centralized.nameless —— Link time update (100
magent.simulation.agentZ —— at 99.9%000000001425 from ¥ process
magent.simulation.agentX —— at 99%9.9%000000001425 from Y process
magent.simulation.agentY -- at 99.99000000001425 from X process

Tuple (2.58548295903819; X)

.00000000001425)

Tuple (3.1153759160666223; Y)
Tuple (3.1153759160666223; Y)
Tuple (2.58548295903819; X)

Figure 2.1: Debug system level ”all” and FILE_ LOGGING_ENABLED for getting started 2

Logback uses a hierarchical naming system. Each division is separated by a dot. For exam-

ple, mecsyco is a parent of mecsyco.magent.

(mecsyco.magent < mecsyco)
Logback enables to set a level per logger. If a level is not specified then the logger inherits of the
level of its parent. For example, if ‘mecsyco.magent‘ has no level, then it inherits of the level of

mecsyco.

The set of logger is then partially ordered

The loggers without parents (the loggers without dot in their name) have a default parent called

root.

Chapter 3

Configuration

A default configuration is present in the ”conf” folder. Please don’t change the file names.

Use textbfconf/mecsyco.properties to set basic printing configurations. Short comments are present

in the configuration file as reminders.

By default the messages are only printed into the standard output (console). If FILE LOGGING_ENABLED
is uncommented, they are also printed in a file (don’t forget to change the folder path, or to create

a folder named ”log” in your project root folder).

We propose the settings of the level of three set of loggers:

e M_AGENT_LOGGING_LEVEL: assigns a level of logging to mecsyco.magent

¢ INTERFACE _LOGGING_LEVEL: assigns a level of logging to mecsyco.artifact.interface

¢ COUPLING_LOGGING_LEVEL: assigns a level of logging to mecsyco.artifact.coupling
If a variable is not defined with a logging level, it inherits of ROOT_LOGGING_LEVEL.

A level can be assigned to a logger in the file conf/logback-loggers.xml. For example
< loggername = "mecsyco.arti fact.coupling.centralized” level =7 debug” | >
assigns the level DEBUG for all centralized coupling artifact.

conf/logback-test.xml is the plain Logback configuration. It loads the previous configuration
files.

3.1 Create new messages

In the case of the message provided are not sufficient enough, you can add you own message for the
level required. The message will be printed each time the algorithm go through (same behaviors
than System.out.print).

Since MECSYCO is multi-threaded, you should avoid to use static field for a logger. Prefer
create a logger per instance of the component that you wish to log. The following code creates a
logger named ”"name”:

Logger | = LoggerFactory.getLogger(”name”);

To log a message with the level ‘INFO*:

linfo("message”);

Instead of concatenate strings, prefer use the built-in solution:

Linfo(”first: {} second: {}7, 1, 2); (or with concatenation lLinfo(”first: ”+1+"second: ”+2);)

	Introduction
	Installation
	Use
	Levels
	Loggers

	Configuration
	Create new messages

